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COASTAL PROTECTION AND 
RESTORATION AUTHORITY 

This document was developed in support of the 2023 Coastal Master Plan being prepared by the 

Coastal Protection and Restoration Authority (CPRA). CPRA was established by the Louisiana 

Legislature in response to Hurricanes Katrina and Rita through Act 8 of the First Extraordinary Session 

of 2005. Act 8 of the First Extraordinary Session of 2005 expanded the membership, duties, and 

responsibilities of CPRA and charged the new authority to develop and implement a comprehensive 

coastal protection plan, consisting of a master plan (revised every six years) and annual plans. CPRA’s 

mandate is to develop, implement, and enforce a comprehensive coastal protection and restoration 

master plan.  
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EXECUTIVE SUMMARY 

As part of the model improvement effort for the 2023 Coastal Master Plan, the Habitat Suitability 

Index (HSI) models used during previous master plans were reevaluated to assess how the model 

relationships could be improved, and to determine what species should be included in the master plan 

analyses. This process considered the technical reviews, comments, and suggested improvements 

provided by model developers, advisory groups, and other experts during previous master plans. 

Reviews were then conducted to determine the availability of data and information that could be used 

to make model improvements. As a result of this effort, a recommended list of relevant species to 

model is provided, and HSI model improvements are recommended that are categorized by whether 

the suitability index (SI) relationship to be improved is statistical-based or literature-based. 

The species recommended to be included in the 2023 Coastal Master Plan analyses are: eastern 

oyster, brown shrimp, white shrimp, blue crab, crayfish, gulf menhaden, spotted seatrout, largemouth 

bass, American alligator, gadwall, mottled duck, brown pelican, seaside sparrow, and bald eagle. 

These species were selected because they represent a range of taxonomies, life histories, trophic 

levels, and habitats, and most are commercially- or recreationally-important in coastal Louisiana. Most 

of these species were also included in the 2017 Coastal Master Plan analyses, and the models used 

during that effort should be further improved. Seaside sparrow and bald eagle are new for the master 

plan, and new models should be developed for the analyses. 

The 2017 fish, shrimp, and blue crab HSI models included a water quality SI that was based on 

statistical analyses of species catch and environmental data collected by the Louisiana Department of 

Wildlife and Fisheries. As suggested during the 2017 Coastal Master Plan, the modeling approach 

used to develop the water quality SI was revisited and alternate modeling approaches were explored. 

Using literature and an evaluation of the general steps of model development, three components for 

HSI model improvement were identified, including 1) selecting alternative modeling approach(es); 2) 

detecting and resolving statistical issues; and 3) improving model fit and evaluation. Multiple options 

for each component were explored, which resulted in a proposed multi-step phased approach for 

model improvement. This proposed approach entails improving the generalized linear models used for 

the 2017 water quality SIs and then, if desired, comparing them to alternative model approaches (e.g., 

generalized additive models) to explore model performance and select the best approach to use for 

the 2023 Coastal Master Plan HSI models.   

All of the existing master plan HSI models include literature-based SIs, which use information from 

published studies of species-habitat associations to derive suitability relationships. Similar to previous 

master plans, these literature-based SIs should be updated and improved for the 2023 Coastal 

Master Plan using recent literature and new ecological knowledge. Preliminary reviews were 
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conducted and recent information was found that could be used to improve the eastern oyster, 

crayfish, and potentially brown pelican HSI models; but no appropriate recent literature was located 

for improvement of the American alligator, gadwall, and mottled duck HSI models. However, it is 

recommended that the literature reviews and information searches be continued. In addition to the 

statistical-based water quality SI, the 2017 fish, shrimp, and blue crab HSI models also included a 

structural habitat SI that was based on literature showing high densities of these species in 

fragmented marsh. The relationship used for this SI, however, did not account for the effects of other 

estuarine habitats, such as submerged aquatic vegetation and oyster reefs, which are also important 

to these species. Therefore, a meta-analysis approach is proposed that would estimate the relative 

importance of these habitats for each species, and the results of this analysis could be used to 

calculate a new structural habitat SI for the 2023 Coastal Master Plan.     
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1.0 INTRODUCTION 

Habitat suitability index (HSI) modeling has a long history in water resource and restoration planning 

for describing the quality or capacity of habitats to support fish and wildlife species (United States Fish 

and Wildlife Service [USFWS], 1981). HSI models are simple to construct and communicate, and are 

informed by species life history information along with presence-absence or relative abundance data 

collected over a range of habitat conditions. HSI models consist of functions that relate key 

environmental variables to the quality or suitability of the habitat for a species. The individual 

relationships for each environmental variable are called suitability indices (SI). The SIs are 

standardized to a 0 to 1 scale, with 0 defined as unsuitable and 1 defined as most suitable.   

Habitat suitability index models have been used in previous master plan modeling efforts to evaluate 

the potential effects of coastal restoration and protection projects on habitat for key coastal fish, 

shellfish, and wildlife species. For the 2012 Coastal Master Plan, the HSI models were based on SIs 

derived from the literature and best professional judgement from observations of species-habitat 

associations in the field (Nyman et al., 2013). For the 2017 Coastal Master Plan, the HSI models 

included a mix of SIs informed by literature and statistics (Brown et al., 2017). More specifically, for 

blue crab, brown shrimp, white shrimp, gulf menhaden, bay anchovy, spotted seatrout, and 

largemouth bass, statistical components of the 2017 HSI models included a water quality SI that 

related monthly species catch-per-unit-effort data (CPUE) with corresponding salinity and water 

temperature measurements collected by the Louisiana Department of Wildlife and Fisheries (LDWF) 

long-term coastwide monitoring program. This water quality SI was then combined with literature-

based SIs for structural habitat and chlorophyll a concentration to form the HSI model for each 

species. However, models for eastern oyster, crayfish, American alligator, gadwall, green-winged teal, 

mottled duck, and brown pelican continued to be based on literature-derived relationships because of 

the lack of suitable datasets for development of statistical-based models.  

The 2017 Coastal Master Plan HSI models received feedback and review throughout the entire model 

development process from several entities, including the Predictive Modeling Technical Advisory 

Committee (PM-TAC), LDWF scientists, and other experts. These reviews provided recommendations 

for improvement of the modeling approach for future master plans (Callaway et al., 2017). Major 

comments regarding the 2017 HSI models included:   

1. Re-evaluate the fish, shellfish, and wildlife species included in the modeling 

effort. This evaluation should consider whether there are additional 

economically- or ecologically-important species that should be included in the 

effort. New species should be added if warranted and provided there are 

sufficient resources available (e.g., existing models or data), to develop an HSI 

model. Conversely, species could be dropped if they are no longer justified or if 
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model performance cannot be improved.   

 

2. Re-evaluate the Generalized Linear Model (GLM) approach used to develop the 

statistical-based SIs for the 2017 HSI models. The polynomial functions used in 

the approach may impose an unrealistic functional form to the CPUE data and 

may fit poorly in areas of sparse data (Callaway et al., 2017). More recent, 

updated statistical methods should be investigated for development of the HSI 

models. It was also recommended that future work investigate the robustness of 

the HSI models to alternative formulations and data uncertainty.  

 

3. Incorporate new ecological knowledge into the existing HSIs. Suitability indices 

could be adjusted based on revised understanding and/or additional data from 

the literature or field studies. For example, suggested revisions include adjusting 

eastern oyster life history processes such as spawning in relation to seasonal 

environmental conditions. Another example is to reevaluate how to model 

suitability for structural habitats, beyond strictly marsh vegetation and open 

water, for the fish and shellfish species that differentially use these coastal 

habitats for increased foraging and predation refuge. 

As part of the model improvement effort for the 2023 Coastal Master Plan, the HSI models were 

reevaluated to assess the data and information available to improve existing SIs, as well as to 

determine whether additional species or life stages should be included (or excluded). To accomplish 

this effort, the 2023 Coastal Master Plan HSI team was established and tasked to: 1) review the 2017 

HSI models, results, and lessons learned from implementation into the master plan modeling 

framework; 2) consider technical reviews, comments, and suggested improvements provided by model 

developers, advisory groups, and other experts; and 3) provide a series of HSI model improvement 

recommendations to the master plan Model Decision Team (MDT). The MDT is responsible for 

deciding which recommendations to adopt, and then initiating the HSI model improvement activities.    

The purpose of this technical memorandum is to document the process the 2023 Coastal Master Plan 

HSI Team has taken and communicate potential recommendations to the MDT. This technical 

memorandum is organized into four model improvement activities under Section 2. The first activity 

(Section 2.1) is to revisit the species included in previous master plan modeling efforts and identify 

relevant species to include in the 2023 Coastal Master Plan effort. Most of the species identified in 

this memorandum were also included in the 2017 Coastal Master Plan. Consequently, as with 2017 

models, the 2023 HSI models for these species are likely to include a mix of literature-based and 

statistical-based SIs. The second activity re-evaluates the methods used to develop the statistical-

based SIs, and proposes alternative statistical modeling approaches, methods to detect and resolve 

statistical issues, and methods to improve model fit and evaluation (Section 2.2). The third activity 

suggests ways in which the literature-based SIs can be updated and improved by incorporating recent 

literature, data, and different analyses (Section 2.3). The fourth activity includes suggestions for the 
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development of HSI models for new species (Section 2.4). Lastly, Section 3 summarizes the 

recommendations (and options for implementing the recommended improvements) to provide CPRA 

with potential next steps toward implementing the 2023 HSI model improvements. 
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2.0 MODEL IMPROVEMENT 
ACTIVITIES 

2.1 IDENTIFY RELEVANT SPECIES TO MODEL 

Several factors were considered in selecting relevant species to include in the 2023 Coastal Master 

Plan modeling effort. Species were selected to represent the range of habitats that are likely to be 

affected by master plan projects, including marshes, swamps, barrier islands, and subtidal water 

bottoms. In addition, the selected species represent different taxonomic groups, life histories, and 

trophic levels for a more complete assessment of project effects across faunal communities. Because 

of their importance to Louisiana’s culture and economy, key species supporting commercial and 

recreational fishing and hunting industries were selected. Lastly, species of conservation concern, as 

identified by the Louisiana Wildlife Action Plan (Holcomb et al., 2015), were considered and a select 

few are recommended to be included. 

The species recommended to be included in the 2023 Coastal Master Plan modeling effort are: 

eastern oyster, brown shrimp, white shrimp, blue crab, crayfish, gulf menhaden, spotted seatrout, 

largemouth bass, American alligator, gadwall, mottled duck, seaside sparrow, brown pelican, and bald 

eagle (Table 1). Most of these species were included in the 2017 Coastal Master Plan, and 

consequently there are well-developed HSI models that can be further refined and improved. For the 

2017 Coastal Master Plan, life stage-specific HSI models were developed for brown shrimp, white 

shrimp, gulf menhaden, and spotted seatrout. These should be maintained to account for the 

changing habitat requirements that occur for these species during the estuarine phase of their life 

cycles. Bay anchovy (Anchoa mitchilli) and green-winged teal (Anas crecca), which were included in 

the 2017 Coastal Master Plan, should be dropped for the 2023 Coastal Master Plan because they are 

similar to gulf menhaden and gadwall, respectively, in terms of habitats, trophic guilds, and life 

histories.   

Bald eagles and seaside sparrow are included to increase the diversity of habitats represented in the 

analyses. These species were selected following the recommendations of scientists from Audubon 

Louisiana, and after an evaluation of available HSI models by the USFWS and other sources. Many 

other coastal bird, mammal, and reptile species were considered, but dismissed because either the 

species are habitat generalists that would not be significantly affected by master plan projects, or the 

master plan’s Integrated Compartment Model (ICM) could not supply the required input data for the 

species’ HSI model. Furthermore, some of the models for shoreline or barrier island nesting bird 

species are better suited for evaluating existing nesting sites and other small, discrete areas; and thus 
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are not well-suited for coastwide planning assessments. Wildlife species that were considered but not 

included in the 2023 Coastal Master Plan modeling effort were: American coot, clapper rail, 

diamondback terrapin, Forster’s tern, great egret, laughing gull, least tern, lesser snow goose, mink, 

river otter, roseate spoonbill, slider turtle, white ibis, and white-tailed deer.   

  

Table 1. Species included in the 2023 Coastal Master Plan HSI analyses, their 

ecological or economic significance, and the source of the HSI model used for the 

model improvement effort. x = separate HSI models for the small and large 

juvenile life stages have been developed. y = separate HSI models for juvenile 

and adult life stages have been developed. 

 

SPECIES SPECIES SIGNIFICANCE MODEL SOURCE 

EASTERN OYSTER          

(CRASSOSTREA VIRGINICA) 

 ESTUARINE, SEDENTARY, PLANKTIVOROUS 

MOLLUSK 

 PROVIDES VALUABLE ECOSYSTEM SERVICES 

 SUPPORTS IMPORTANT COMMERCIAL FISHERIES 

2012 COASTAL 

MASTER PLAN 

BROWN SHRIMP X       

(FARFANTEPENAEUS 

AZTECUS) 

 BENTHIC CRUSTACEAN THAT USES ESTUARIES AS 

JUVENILE NURSERY HABITAT 

 SUPPORTS IMPORTANT COMMERCIAL FISHERIES 

2017 COASTAL 

MASTER PLAN 

WHITE SHRIMP X             

(LITOPENAEUS SETIFERUS) 

 BENTHIC CRUSTACEAN THAT USES ESTUARIES AS 

JUVENILE NURSERY HABITAT 

 SUPPORTS IMPORTANT COMMERCIAL FISHERIES 

2017 COASTAL 

MASTER PLAN 

BLUE CRAB                   

(CALLINECTES SAPIDUS) 

 BENTHIC CRUSTACEAN FOUND IN ESTUARINE 

HABITATS THROUGHOUT MOST OF ITS LIFE CYCLE 

 SUPPORTS IMPORTANT COMMERCIAL FISHERIES 

2017 COASTAL 

MASTER PLAN 

CRAYFISH                  

(PROCAMBARUS CLARKII 

AND P. ZONANGULUS) 

 BENTHIC CRUSTACEAN PRIMARILY ASSOCIATED 

WITH FRESHWATER HABITATS 

 SUPPORTS IMPORTANT COMMERCIAL FISHERIES 

2017 COASTAL 

MASTER PLAN 

GULF MENHADEN Y          

(BREVOORTIA PATRONUS) 

 PLANKTIVOROUS FISH THAT USES ESTUARIES AS 

JUVENILE NURSERY HABITAT 

 SUPPORTS IMPORTANT COMMERCIAL FISHERIES 

2017 COASTAL  

MASTER PLAN 

SPOTTED SEATROUT Y          

(CYNOSCION NEBULOSUS) 

 PREDATORY FISH FOUND IN ESTUARINE HABITATS  

THROUGHOUT MOST OF ITS LIFE CYCLE 

 POPULAR RECREATIONAL FISHERY SPECIES 

2017 COASTAL 

MASTER PLAN 
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SPECIES SPECIES SIGNIFICANCE MODEL SOURCE 

LARGEMOUTH BASS         

(MICROPTERUS 

SALMOIDES) 

 PREDATORY FISH PRIMARILY ASSOCIATED WITH 

FRESHWATER HABITATS 

 POPULAR RECREATIONAL FISHERY SPECIES 

2017 COASTAL 

MASTER PLAN 

AMERICAN ALLIGATOR          

(ALLIGATOR 

MISSISSIPPIENSIS) 

 UPPER TROPHIC LEVEL REPTILE PRIMARILY 

ASSOCIATED WITH FRESHWATER HABITATS 

 COMMERCIALLY-HARVESTED SPECIES 

2017 COASTAL 

MASTER PLAN 

GADWALL                                

(ANAS STREPERA) 

 MIGRATORY WATERFOWL THAT USES ESTUARIES 

AS WINTERING HABITAT 

 POPULAR RECREATIONALLY-HUNTED SPECIES 

2017 COASTAL 

MASTER PLAN 

MOTTLED DUCK                       

(ANAS FULVIGULA) 

 WATERFOWL THAT IS YEAR-ROUND RESIDENT OF 

ESTUARIES 

 STATE-IDENTIFIED SPECIES OF CONSERVATION 

NEED 

2017 COASTAL 

MASTER PLAN 

BROWN PELICAN            

(PELECANUS 

OCCIDENTALIS) 

 UPPER TROPHIC LEVEL COASTAL SEABIRD THAT 

NESTS PRIMARILY ON COASTAL ISLANDS 

 STATE-IDENTIFIED SPECIES OF CONSERVATION 

NEED 

2017 COASTAL 

MASTER PLAN 

SEASIDE SPARROW         

(AMMOSPIZA MARITIMA 

FISHERI) 

 YEAR-ROUND RESIDENT OF VEGETATED MARSH 

HABITATS 

 STATE-IDENTIFIED SPECIES OF CONSERVATION 

NEED 

NEW MODEL 

BALD EAGLE                  

(HALIAEETUS L. 

LEUCOCEPHALUS) 

 UPPER TROPHIC LEVEL RAPTOR THAT NESTS 

PRIMARILY IN WOODED, FRESHWATER HABITATS 

 STATE-IDENTIFIED SPECIES OF CONSERVATION 

NEED 

NEW MODEL 

2.2 IMPROVE STATISTICAL-BASED SUITABILITY INDICES 

The 2017 HSI models developed for blue crab, brown shrimp, white shrimp, gulf menhaden, spotted 

seatrout, and largemouth bass included a statistical-based water quality SI. Review of the models by 

the PM-TAC (Callaway et al., 2017) indicated that the modeling approach used to develop that SI 

should be revisited and alternate modeling approaches should be explored. To address this comment, 

the habitat suitability model development literature (also called species distribution models) was 

reviewed and each of the general steps of model development was considered, from data preparation 

and model fitting to model evaluation, while considering the ecological justification and rationalization 

through every step. In keeping with widely accepted principles of model development (e.g., Guisan & 
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Thuiller, 2005) and working within the framework of available data, the 2023 Coastal Master Plan HSI 

team identified three components for model improvement:  

 Component 1: Select Alternative Modeling Approach(es) 

 Component 2: Detect and Resolve Statistical Issues 

 Component 3: Improve Model Fit and Evaluation 

For each component, multiple options are presented but are not necessarily mutually exclusive. In 

instances where they are, the pros and cons of selecting one option over another are summarized, 

where guidance is well-established in the literature. Furthermore, decisions made in one component 

will influence the available options in other components. To help clarify, the available options are 

provided in each of the sections and then it is summarized how these options across components may 

be paired together in the summary recommendations in Section 3. 

Component 1: Select Alternative Modeling Approach(es) 

Several statistical approaches are available to model species-environment relationships. The selection 

of the approach is largely driven by the type of data available and the intended purpose and 

application of the modeling effort (Guillera-Arroita et al., 2015). The 2017 Coastal Master Plan used 

the GLM modeling approach for constructing the water quality SI for the fish and shellfish HSI models. 

Although considered a classical and flexible approach, one important limitation with GLMs is their 

sensitivity to modeling scale, as is further discussed later in this section. In this section, the use of 

GLMs is revisited and alternative modeling approaches are discussed. Each of the modeling 

approaches described herein have pros and cons, but it is important to note that there is no 

consensus within the current literature on an approach that works best for any given situation. 

Commonly used modeling approaches, organized by type of data they require, are presented in Figure 

1. Each of these approaches are appropriate to use with the available LDWF data and for evaluating 

projected spatial changes in species’ suitability among the 2023 Coastal Master Plan restoration 

alternatives. The LDWF collects CPUE (relative abundance) using different gears that target certain 

species and life stages across coastal Louisiana. Any of the models using presence-only/presence-

background (Figure 1) will work with the LDWF data but require the data to be rescaled. This means 

the CPUE response would be changed to 1s and 0s based on criteria the analyst would decide upon.  

However, models constructed with relative abundance data are generally more robust than models 

created with presence/absence data (Howard et al., 2014). As a result, the team decided to focus 

efforts on those approaches suitable for relative abundance data only: GLMs, Generalized Additive 

Models (GAM), Classification and Regression Trees (CART), RandomForest, and Ensemble Modeling.  
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Since the modeling approaches will be used in a predictive application, they have implications for the 

way they should be fitted and evaluated (Elith & Leathwick, 2009). Under-fit models may not ade-

quately describe observed occurrence-environmental relationships while ‘over-fit’ models may ascribe 

patterns to environmental noise and may not be accurately interpreted (Merow et al., 2014). In the 

following sections, each modeling approach is described as well as important aspects that should be 

considered, including model fit and evaluation. The level of effort for model development (i.e., relative 

to the other modeling approaches described herein) is briefly described. These considerations are 

then summarized in Table 2 for all modeling approaches side-by-side. 

 

Figure 1. Statistics-based habitat suitability modeling approaches and the data 

types needed to build them. Green shading indicates modeling approaches that 

were selected for consideration in the 2023 Coastal Master Plan modeling. 

GLMs are commonly used to model habitat suitability of species; this approach was used in the 2017 

HSI models. GLMs are a flexible tool which estimates the relationship between predictor variables 

(environmental covariates) and the response variable (relative abundance) using Maximum Likelihood 

Estimation. In cases with enough sample size, this estimation method is robust and generally 

produces adequate predictive ability. All observations within a GLM must be independent, but random 

effects can be implemented to address non-independence within the data (through time or space). 

Additionally, predictor variables can be transformed into non-linear relationships using 

transformations such as quadratic or cubic (sometimes called polynomials) or interactions between 
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variables can be explored. GLMs can be implemented in any standard statistical software and produce 

output that can be translated into an equation for prediction (Zar, 2010). One important limitation with 

GLMs is their sensitivity to the modeling scale: these models often are poor at predicting outside the 

bounds of the data they are fit to or outside the spatial scale they were fit to (Thuiller et al., 2003).  

Given that the GLM modeling approach was used for constructing the water quality SI in the 2017 HSI 

models and this equation has already been integrated into the ICM, the level of effort for incorporating 

this model into the 2023 HSIs is relatively low (Table 2). However, several other model improvement 

steps described in the following sections are recommended for this existing model, as discussed in 

Section 3.0, and this would require a minimal amount of time (3 to 4 months). 

GAMs are a special case of GLM which automates the process of identifying the most appropriate 

transformations of the data to generate a polynomial relationship (Guisan et al., 2002). GAMs allow 

parametric and non-parametric predictors to be modeled simultaneously, generally leading to a better 

fit model and a greater ability to predict outside the bounds of the data and at multiple scales (Thuiller 

et al., 2003). However, this can lead to overfitting and thus great care in the selection of the 

‘smoother’ parameter must be taken (Wood, 2006). GAMs can be implemented in most statistical 

software and their associated predictive equations extracted, but these equations have the potential 

to be large and/or complicated. Large or complicated equations may lead to slightly higher 

computation times in both fitting the model and then predicting the model for new conditions in the 

future compared to the GLM approach. However, the HSI predictive models implemented within the 

ICM framework would still run efficiently compared to the other ICM modeling processes; the GAM 

equations would not be limiting the computation times for the numerical simulations in the master 

plan. To construct a new water quality SI using the GAM approach, the team estimates a moderate 

amount of development and testing time (Table 2). 
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Table 2. Summary of key considerations for each modeling approach. 

“Distribution assumptions” refers to whether there are limits on the statistical 

distribution of predictors, “Predictive power” refers to the approach’s ability to 

predict into novel space or time periods, “Development time” is the estimated 

effort required to build the model, “ease of ICM integration” refers to the level of 

programming required to code the model into the ICM, and “computation time” 

refers to how long the model takes to run based on a simulated dataset of 

10,000 observations and 2 predictors. 

 

 GLM GAM CART RANDOMFOREST ENSEMBLE 

DISTRIBUTION 

ASSUMPTIONS 

YES YES, BUT 

FLEXIBLE 

NONE NONE N/A 

PREDICTIVE 

POWER 

LOW MODERATE 

TO HIGH 

MODERATE MODERATE TO 

HIGH 

HIGH 

DEVELOPMENT 

TIME 

ALREADY DONE 

FOR 2017 

6-8 MONTHS 6-8 MONTHS 6-8 MONTHS 12+ MONTHS 

EASE OF ICM 

INTEGRATION  

ALREADY DONE 

FOR 2017 

EASY TO 

MODERATE  

MODERATE  MODERATE  MODERATE  

COMPUTATION 

TIME 

.01 SEC 0.15 SEC 0.05 SEC 36.33 SEC 1 MIN 

CARTs are a machine learning technique first introduced in the 1980s to bridge statistics with 

computer science (e.g., Breiman et al., 1984) for creating predictive models. CARTS (or decision trees, 

regression trees) are commonly used in data mining with the objective of creating a model that 

predicts the value of a response variable based on the values of several independent variables. CART 

models recursively split observation data using identified predictors to find homogenous (i.e., similar) 

response variable groups (Krzywinski & Altman, 2017). Therefore, CARTs do not produce a predictive 

equation like GLMs or GAMs, but instead produce rules that can be visualized with a decision tree. 

These rules can then be used to predict species patterns using new data (i.e., new predictor variables 

are the future environmental simulated conditions from the ICM). Because CARTs can essentially 

produce decision trees that are 100% accurate, the models produced with this method can easily be 

overfit and therefore have low predictive power when used with other data. To address this, the 

modeler can implement a complexity parameter which limits tree growth based on how well a split 

improves the relative error in the model (Lever et al., 2016). While there is some guidance on what 

this value should be, it is generally up to the modeler to determine and justify this value. The model 

development time using statistical software with the LDWF data would be similar to that for the GAM 

development and testing (Table 2). 
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RandomForest is a special kind of CART model that generates multiple classification trees that are 

then combined into an ensemble classification (Breiman, 2001). As with CART, RandomForest 

produces a classification tree, not a predictive equation, and are sometimes considered a “black-box” 

due to the difficulty in examining each individual tree. The algorithm uses an estimate of 

generalization error called the “out-of-bag” error to determine how strong the classifier is, and the 

modeler may increase the number of trees produced by the RandomForest algorithm to decrease the 

error and thus produce a better fit ensemble tree (Breiman, 2001; Peters et al., 2007). Models built 

using RandomForest are typically highly accurate when tested against data used to build the model 

(Prasad et al., 2006), but may not necessarily perform any better than other modeling approaches 

when used in predictive applications with new data (i.e., simulated ICM data inputs). As mentioned, 

the models are also considered a ‘black box’ as the algorithm cannot be visualized as a predictive 

equation. The model development time is similar to that of GAMs and CARTs (Table 2), and the 

implementation of the resulting RandomForest model as a submodule to be used within the ICM 

framework would be similar to the GAM and/or CART submodule(s) as well. 

Ensemble models are developed by using a consensus method based on output predictions from 

multiple modeling approaches (Marmion et al., 2008). In this case, the ensemble modeling approach 

would mean building the four separate models using GLM, GAM, CART, and RandomForest. The 

predicted suitability outputs from each of these models would then be converted into a weighted 

average using the modeler’s chosen accuracy measure (e.g. area under the receiver operating 

characteristic curve [AUC] or Cohen’s kappa) to produce the ensemble model. Ensemble models have 

been frequently shown to generate the most accurate and robust habitat suitability models because 

they incorporate the strengths of all modeling approaches (Grenouillet et al., 2011). However, this 

approach would require more development time than any of the previous modeling approaches (Table 

2), as it requires the modeler to develop each of the above models, and then weigh the predicted 

responses from each of the four suitability model approaches for the finalized ensemble model. 

Component 2: Detect and Resolve Statistical Issues 

Prior to running the statistical-based models, there are common data steps that should be conducted 

to avoid statistical errors and misinterpretation of model output. These include: 1) detecting outliers, 

2) testing for heterogeneity of variance, collinearity, and dependence of observations, 3) zero inflation 

in generalized linear modeling, 4) fitting the correct type of relationships between dependent and 

independent variables, and 5) using appropriate data transformations (Zurr et al., 2010). The basic 

principles of data analysis are widely discussed and summarized in the literature (Hilborn & Mangel, 

1997; Quinn & Keogh, 2002; Zurr et al., 2010). Although some of these data steps were performed 

for the 2017 HSI model development (e.g., detecting outliers, testing for collinearity and dependence 

of observations), they were not documented in the technical reports. Therefore it is recommended that 

as part of any improvement to the statistical-based models, each of these elements be revisited and 
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documented to ensure compliance with standard best practices of data analysis. 

Component 3: Improve Model Fit and Evaluation 

Evaluation of model performance includes assessment of: 1) ecological justification of selected 

predictor variables; 2) resulting relationships, including the ability to visually interpret the resulting 

habitat suitability response functions; 3) accuracy of model predictions (Austin et al., 2006; Elith & 

Leathwick, 2009; Merow et al., 2014). Options for assessing these elements of performance for the 

statistical-based SIs is discussed below. 

In the water quality SI developed for each species in the 2017 HSI models, two predictor variables, 

salinity and temperature were included because of substantial evidence in the literature that suggest 

these environmental factors influence habitat suitability for estuarine fish and shellfish life stages 

(e.g., Adamack et al., 2012; Baker & Minello, 2010; Rozas & Minello, 2010; Flaherty & Guenther, 

2011; Patillo et al., 1997; Kupschus, 2003; Froeschke & Froeschke, 2011). Salinity and temperature 

data collected alongside relative abundance data (i.e., CPUE) were also readily available as part of the 

existing LDWF fisheries-independent monitoring dataset. Review of the literature revealed that the 

functional form of the relationship was likely going to be non-linear and interacting, so both linear and 

quadratic forms of salinity and temperature were included in the model development and selected 

using stepwise selection procedure (p≤ 0.05). This resulted in a relatively simple SI that identified 

some expected response curves demonstrated by the literature. The same salinity and temperature 

data were used with the species CPUE data collected by LDWF for the statistical-based water quality SI 

improvements.  

However, additional ecological predictor variables could be considered to increase model complexity 

and potentially reduce total model error. Predictor variables would be selected that are ecologically 

relevant and are closely related (i.e., proximal) to the causal factor driving the species CPUE response 

(Elith & Leathwick, 2009). Tradeoffs exist on the number of variables that should be included. Simple 

models with few predictors are often capable of identifying key trends while smoothing over noise and 

variation in the dataset (Figure 2), as is the case with the current water quality SI. Increasing the 

number of predictors and ultimately increasing the complexity of the model, allows for fitting many 

features (Figure 2), but can only be done with sufficiently large datasets and care must be taken to 

avoid over-fitting (Merow et al., 2014).  
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Figure 2. Comparison of response curves among different modeling approaches 

and with different degrees of control over the complexity of the fitted response 

curves (from Merow et al., 2014). 

Although additional predictor variables related to structural habitat and chlorophyll a concentration 

were included in the fish, shrimp, and blue crab 2017 HSI models as separate SIs (as discussed in 

Section 2.3), they were developed independently of the water quality statistical-based SI. Another 

option for improving the statistical-based SI models would be to include additional relevant predictor 

variables, in addition to salinity and temperature, and reconstruct the SI using one of the modeling 

approaches described previously. These additional predictor variables would have to come from 

datasets other than the LDWF fisheries independent monitoring dataset, but that show overlap in 

space and time with the LDWF dataset. For example, annual land and water spatial data currently 

exist for the Louisiana coast for 16 years between 1985 and 2016 (Couvillion, 2018) and could be 

produced for additional years within and around that time period, if needed. Different kinds of 

predictor variables could be generated from these spatial data, including land-to-water ratios, distance 

to marsh edge, area of marsh edge, and several fragmentation metrics available within ArcGIS Spatial 

Analyst. Each of these predictor variables could be calculated within a buffered area around the LDWF 

sampling location for the years where the datasets overlap. Although multiple buffer sizes could be 

tested, a literature review may help guide what size buffer is most appropriate for calculating these 

variables (i.e., at what spatial scale are these variables likely to be important to the species). Although 
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these data are not currently available for all years of the LDWF data, a reduction in statistical power is 

not anticipated given that 16 years of data is still a considerably large dataset for habitat suitability 

modeling. However, if the smaller subset of data does generate concerns or issues, additional land 

and water datasets could be developed for other years that overlap with the LDWF dataset.   

Other predictor variables associated with Mississippi and Atchafalaya River discharge, climate, and 

weather, for example, could also be explored for inclusion, pending available data, ease of accessing 

data, collinearity with other variables (discussed below), and other considerations determined by the 

model developers. Although not all of these predictor variables may be available output from the ICM, 

it is important to include them in the expanded data set because they have the potential to adjust the 

relationships of other predictor variables. For integration into the ICM, they could be held constant (at 

their mean, for example) and would not need to vary over time. Discussion of relevant variables with 

LDWF scientists would assist in refining a list of predictor variables for possible inclusion in the 

expanded dataset. As part of the model building procedure, variable selection methods (e.g., p-values, 

95% confidence intervals) would then be used to select the most appropriate variables for final 

inclusion in the updated SI.   

One potential outcome of this option for incorporating additional predictor variables in the expanded 

dataset is that none of the variables are ultimately selected for inclusion in the model (i.e., variables 

are not significant or do not improve model fit). One way to prevent spending too much effort to arrive 

at this unwanted outcome for this option would be to first conduct some simple data exploratory steps, 

such as testing for correlation between relative abundance and the new predictor variables first, prior 

to building the model. If no discernable pattern emerges, the model developers could determine that 

continuing this expanded data exploration for model building is likely not a promising endeavor. 

Whether the expanded dataset option is included for implementation or not, assessment of model 

biases should be performed and documented for the 2023 water quality SI models. After predictors 

are selected for the model, model biases such as collinearity among predictors and spatial 

autocorrelation in model residuals should be assessed. Model biases were not documented in the 

2017 Coastal Master Plan and warrant revisiting as part of the model improvement activity. Several 

diagnostics exist for testing for collinearity (Table 3). Ignoring collinearity can result in increased error 

and potential failure to detect significant effects when they exist (i.e. Type II error; Zurr et al., 2010).  

Where collinearity may be present, one of the predictor variables could be removed.  
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Table 3. Collinearity diagnostics: indices and their critical values (from Dormann 

et al., 2013). 

   

Method Threshold 

Absolute value of correlation coefficients (|r|) > 0.7 high collinearity 

Determinant of correlation matrix (D) 
Near 0 = high collinearity 

Near 1 = no collinearity 

Condition index (CI) > 30 

Condition number (CN) > 30 

Kappa (K) 5 

Variance-decomposition proportions (VD) > 0.5 

Variance inflation factor (VIF) > 10 

Tolerance < 0.1 

Spatial autocorrelation, or the tendency for data closer together in space to be more similar, is a well-

known phenomenon in ecology (Legendre, 1993) and may be present in the existing water quality SI.  

The presence of spatial autocorrelation can both impact the coefficient estimates and the strength of 

the relationships within a model (Lichstein et al., 2002). In models of habitat suitability or species 

distribution, accounting for spatial autocorrelation within the observation data can change predictor 

variable importance and improve the fit (or reduce levels of uncertainty, Dormann, 2007). To address 

spatial autocorrelation within HSI models, researchers typically employ one of two approaches: 1) 

spatial thinning of observations or 2) statistical methods that address or account for autocorrelation. 

Spatial thinning of observations requires knowledge of the species’ dispersal ability and using that 

knowledge to remove observations until there are no observations that are spatially dependent on 

each other (Fortin & Dale, 2005). Statistically accounting for spatial autocorrelation within the species 

models can be done by adding environmental covariates such as day of year or geographic region to 

account for seasonal timing of life stage migrations and species occurrence within the various coastal 

habitats. To test whether the existing model’s output is spatially autocorrelated, the residuals of the 

existing model can be checked using Moran’s I and a decision can then be made on if and how it 

should be addressed (Dormann et al., 2007). If an autocorrelation variable is added to the model 

while resolving biases, the variable can be held constant when integrated into the ICM and would not 

affect or limit the model’s use in the master plan. 

The second step of assessing model performance is evaluating the interpretability of the response 

curve (e.g., Figure 2). Once fitted, generating response curves for individual predictor variables, while 

holding other variables in the model constant (at their mean, for example), can assist in determining 

whether the predicted response is ecologically reasonable (Austin, 2007). The complexity of the model 

will have a considerable effect on the generality and interpretability of response curves, as illustrated 

in Figure 2. The complexity of the model is a function of the number of predictors, order of 
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interactions, and other features specific to the modeling approaches themselves. 

In the existing 2017 water quality SI based on salinity and temperature, the fitted response curves 

confirmed the species-habitat relationships from other studies in coastal Louisiana and Texas 

(Adamack et al., 2012; Baker & Minello, 2010; Rozas & Minello, 2010; Patillo et al., 1997). However 

the fitted polynomial response curves often flipped outside of the data range used to fit the model(s), 

so the model values were truncated to the values at the data extremes. For example, if the habitat 

suitability score was equal to 0.2 at a salinity of 2 ppt and a temperature of 10 degrees C, then the 

suitability score was set to 0.2 at temperatures below 10 degrees when salinity was equal or less than 

2 ppt. The other statistical modeling approaches can be evaluated with the current GLM approach to 

determine if the fits and behavior of the functions are better.   

Several data partitioning methods are available to train (fit the model) and validate (estimate 

prediction error) habitat suitability models. For sufficiently large datasets, like the LDWF dataset, the 

data can be randomly divided once into training and validation datasets (for example application see 

Drexler & Ainsworth, 2013). Alternatively, cross-validation (i.e. k-fold partitioning), jackknifing, and 

bootstrapping can be used to determine which part of the data is used to fit the model and which part 

to test it, and the procedure is repeated several times providing a mean and variance for validation 

measures (for example application see Cianfrani et al., 2010). Because the procedure is repeated a 

number of times for these alternative approaches, they are more time consuming than the training 

and validation procedure. However, the cross-validation procedures are presented as an option, 

because if there is interest in implementing the expanded dataset option for potential addition of new 

predictor variables, the exercise would result in fewer years of data for an overall smaller dataset. 

Regardless of the approach, care should be taken in splitting the dataset to control for underlying 

biases such as spatial autocorrelation, as previously discussed (Merow et al., 2014).   

Various criteria are available to evaluate the resulting model(s) fit to the data (i.e., original LDWF 

and/or the expanded data set). Goodness of fit is a measure of the difference between the observed 

data and predicted values and is typically assessed using the chi-square statistic, coefficient of 

determination (R2), examination of model residuals, information criterion such as likelihood or 

Akaike’s Information Criterion (AIC; Akaike, 1973; Thomson & Emery, 2014), or root mean square 

error (RMSE; Zar, 2010). Model accuracy can also be assessed on the validation dataset by also using 

RMSE, AUC (Hanley & McNeil, 1982), Cohen's K (Monserud & Leemans, 1992), and/or the true skill 

statistic (TSS; Allouche et al., 2006). Depending on the statistical modeling approach taken, some of 

these measures are more appropriate than others. RMSE is commonly reported for assessment of 

model performance, and is used for all statistical HSI approaches; R2 is used for GLMs and GAMs; AIC 

is used for GLMs, GAMs, and CART; AUC, Cohen’s K, and TSS are more appropriate for RandomForest.  

Each of these measures has their own bias, so it is advised to use more than one measure beyond 

RMSE when assessing model accuracy. Existing guidelines for assessing some of these measures of 
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model accuracy are provided in Table 4. 

Goodness of fit and accuracy of the model predictions were not assessed for any of the water quality 

SIs during the 2017 Coastal Master Plan effort. Confidence intervals and goodness of fit tests should 

be calculated for the statistical model(s) to define the degree of certainty in the predictions between a 

lower and upper bound. Calculation of model accuracy would require an independent dataset to 

validate the existing model(s). One option would be to use the LDWF dataset beyond 2013 (2014-

2019) as a validation data set, if the same data set used for the 2017 HSI models (1986-2013) is 

used to fit the statistical based SIs. Another option is to divide the full dataset (whether using the 

original LDWF data set or the proposed expanded data set) into a test and validation dataset to fit and 

then re-run the model(s). This recommendation is elaborated on in Section 3.0. 

Table 4. Guidelines for assessing model accuracy using AUC, Cohen’s (Araújo et 

al., 2005) and TSS statistics (Landis & Koch, 1977; Eskildsen et al., 2013). 

 

Model Accuracy 

Assessment 

Model Accuracy Statistics 

AUC Cohen’s K TSS 

Excellent >0.90 >0.75 1 

Good 0.80-0.90 0.4-0.75 0.6-0.9 

Fair 0.70-0.80 . 0.4-0.6 

Poor 0.60-0.70 < 0.40 0.0-0.4 

Fail 0.50 - 0.60 . 0.0 

No predictive ability ≤0.5 0 < 0 

 

2.3 IMPROVE LITERATURE-BASED SUITABILITY INDICES 

All existing master plan HSI models include literature-based SIs. These SIs describe the habitat 

suitability for a variety of environmental factors, such as water level, vegetation type, marsh-to-open 

water habitat configuration, and chlorophyll a concentration. For the 2012 and 2017 Coastal Master 

Plan modeling efforts, these SIs were updated with ecological knowledge from recent literature and 

data. It was hoped that the literature-based SIs could be replaced with statistical-based SIs, similar to 

the previously discussed fish and shellfish water quality SIs, but this effort has been hampered by a 
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lack of suitable datasets. As a result, the literature-based SIs for the 2023 Coastal Master Plan should 

be updated with information from recent studies, beginning with the potential improvements 

discussed in the respective model reports from the 2017 Coastal Master Plan (Brown et al., 2017 and 

attachments). Suggested improvements to the literature-based SIs are discussed below for each 

species or species group.    

FISH, SHRIMP, AND BLUE CRAB 

The 2017 HSI models for blue crab, brown shrimp, white shrimp, gulf menhaden, spotted seatrout, 

and largemouth bass each included a structural habitat SI based on the areal proportion (presented 

as a percentage) of marsh vegetation to open water simulated for each grid cell of the ICM. The 

relationship used for the species’ juvenile models was adapted from Minello and Rozas (2002), and 

represents the observed increase in juvenile fish, shrimp, and crab densities in fragmented marsh 

habitats (Figure 3). Variations of the marsh-to-open water relationship were also developed for models 

of older life stages, but were skewed more toward open water having greater suitability.   

  

   

SI2 = (0.03*V2) + 0.25, when V2 <25 

1.0, when 25 ≤ V2 ≤ 80 

5.0 - (0.05*V2), when V2 >80 

 

 

 

Figure 3. Graphic and numerical representation of the suitability index function 

used to describe juvenile species habitat suitability based on the percentage of 

marsh within a modeled cell. 

In addition to marsh and open water, there are other habitat types, such as submerged aquatic 

vegetation (SAV) and oyster reefs, that are important to estuarine fish and shellfish but are not 

accounted for in the current HSI models. The classification of these habitat types requires information 

about the variables that define them. As the ICM generates more of this information, it will allow for 

the inclusion of these habitats in the SI to better define structural habitat suitability for these species.  

The methodology proposed for refining the structural habitat SI has two components. The first 

component is to refine the SI by adding habitat types beyond the marsh and open water 

classifications. Based on a preliminary review of recent literature (e.g., Minello, 2017), additional 

species relative abundance/density data should be used to derive relative suitability scores for six 

estuarine habitat types. The six habitat types identified from the literature are: interior marsh (MI), 

marsh edge (ME), shallow non-vegetated bottom <1 m depth (SNVB), deep non-vegetated bottom ≥1 
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m depth (DNVB), SAV, and oyster reef (Oyster). The suitability scores of each habitat type can be 

estimated relative to each other from a meta-analysis of field data available from Louisiana and Texas. 

Minello (1999) and Minello et al. (2003) have performed similar meta-data analyses for determining 

which estuarine habitat types support the highest abundances of nekton. 

Not all field studies measure the same habitat types or species metrics. A table of the field studies can 

be constructed to record the catch data by habitat types (see example in Table 5). The catch data by 

habitat type would then be standardized to the maximum value recorded for each study. For example, 

if nekton density were highest in SAV, then the SAV suitability score would be 1.0 and the lower-

density habitats would be scaled relative to this maximum. Plots of the standardized catch data by 

habitat type for each study in Table 5 are demonstrated in Figure 4. The relative suitability of each 

habitat type (0-1) can be determined across the studies using the mean and variation among the 

standardized scores by habitat type. After the relative SI scores are estimated using the meta-data, 

they can be coded as a step function as shown in Figure 5. The pattern shown in Figure 5 might be 

appropriate for juvenile species that prefer vegetated habitats; however, a different pattern would be 

expected for species or life stages that occur in less structured, open water habitats such as gulf 

menhaden. Therefore, the relative suitability of each habitat type should be evaluated by species and 

life stage, and common SI functions could be used across species if similar patterns emerge.  

Table 5. Example data table showing nekton density by habitat types from four 

independent studies, where MI = interior marsh, DNVB = deep non-vegetated 

bottom, SNVB = shallow non-vegetated bottom, ME = marsh edge, SAV = 

submerged aquatic vegetation, and Oyster = Oyster reef.   
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Figure 4. Plots of the standardized suitability scores by habitat type for each of 

the studies listed in Table 5. The scores are standardized by the maximum 

habitat value in each row listed by field study in the table. The legend uses 

abbreviations based on the Season and Species columns in the table. For 

example, SP BC = Spring 1995 for blue crab from Minello and Rozas (2002) in 

the first row, FA WS = Fall 1995 for white shrimp in the fourth row. Habitat 

categories are MI = interior marsh, DNVB = deep non-vegetated bottom, SNVB = 

shallow non-vegetated bottom, ME = marsh edge, SAV = submerged aquatic 

vegetation, and Oyster = Oyster reef. 

 

Figure 5. An example demonstration of SI scores for each habitat type estimated 

from the suggested meta-analysis of field data collected in coastal Louisiana and 

Texas. Note that the actual suitability scores by habitat types have yet to be 

determined and may not appear as shown. 
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The second component to refining the structural habitat SI will require identifying and estimating the 

areal proportion of MI, ME, SAV, SNVB, DNVB, and oyster reef for each grid cell across the ICM 

coastwide domain. For each ICM grid cell (500 m resolution in 2017), the six habitat types can be 

classified (at 30 m resolution in 2017). The current ICM needs improvement in classifying and 

projecting the probability of occurrence for SAV and potentially oyster reef. The remaining habitats, MI, 

ME, SNVB, and DNVB can be classified relatively well by the ICM.  

Additionally, the monthly proportion of time that the MI and ME habitats are inundated with water, and 

therefore accessible to the fish and shellfish, can also be estimated using the ICM output. Inundation 

can affect species marsh use, especially since marsh habitats can vary in steepness (Roth et al., 

2008; Minello et al., 2012; Minello et al., 2015; Rozas & Minello, 2015). It is also important to note 

that the “marsh edge” definition from the ICM output (currently at a 30 m scale; a broad definition) 

includes what is typically defined as “edge” (~within 5 m of open water) and “inner marsh” (>5 m from 

open water) habitat from the field studies. Both marsh steepness and the definition of marsh edge 

from the ICM will be considered carefully when delineating the habitats and determining inundation of 

MI and ME habitats within the ICM grid. Daily water levels are available from the ICM, and the 

elevations of the ME and MI habitat types can be subtracted from the daily water levels to determine 

water depth (i.e., inundation) of the ME and MI habitats. The monthly proportion of time that water 

levels exceed the ME and MI elevations (e.g., water depths ≥ 0.1 m) can then be determined and used 

as an estimate of habitat accessibility for the species. Therefore, the refined SI equation describing 

structural habitat suitability for fish and shellfish species would be: 

SI = [ScoreMI*(PMI*PInund)] + [ScoreDNVB*PDNVB] + [ScoreSNVB*PSNVB] + 

[ScoreME*(PME*PInund)] + [ScoreSAV*PSAV] + [ScoreOyster*POyster] 

Where the relative suitability scores (Score) by habitat type are determined from the meta-data 

analysis and weighted by the areal proportion (P) of the habitat type in each ICM grid cell. The ME and 

MI habitats are additionally weighted by the proportion of time (in days) they are inundated with water 

(PInund) and accessible to the species. The number of habitat types within each ICM grid cell does not 

matter. That is, any of the habitat types can be missing for a grid cell, because all suitability scores are 

weighted by the areal proportion of each habitat given the total area of each ICM grid cell. 

The 2017 HSI models also included SIs related to chlorophyll a concentration. Chlorophyll a 

concentration was used as a proxy for the planktonic prey of gulf menhaden and bay anchovy (Sable 

et al., 2017a; Sable et al., 2017b), as well as to represent primary productivity and thus food 

availability for largemouth bass (Hijuelos et al., 2017a). However, these SIs were inactive during the 

2017 Coastal Master Plan analyses due to limitations in the ICM’s ability to simulate chlorophyll. For 

the 2023 Coastal Master Plan, chlorophyll will no longer be an output of the ICM. As a result, it is 

recommended that the chlorophyll SIs be removed for the 2023 HSI models. Even if chlorophyll 

remained as an output, the SIs for gulf menhaden and bay anchovy would have to be revised to be 
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more representative of chlorophyll a concentrations in coastal Louisiana. 

EASTERN OYSTERS 

The existing HSI model for eastern oyster has been unchanged since its development for the 2012 

Coastal Master Plan (Soniat, 2012). An attempt was made to develop statistical-based water quality 

SIs for a 2017 oyster HSI model using LDWF’s monitoring data; however, limitations in the dataset 

impaired the identification of significant statistical relationships, so the decision was made to continue 

using the 2012 HSI model (Hijuelos et al., 2017b). The oyster monitoring program has recently been 

expanded, but the increased sampling frequency (3 times per year at select Barataria and 

Pontchartrain Basin stations) still may be inadequate for evaluating the intra-annual effects of salinity 

and temperature variability on oysters. The oyster monitoring dataset should be reconsidered for 

future oyster HSI model improvements, but in the interim the existing literature-based model, with 

additional improvements, should provide a more robust tool for determining oyster habitat suitability.  

After conferring with LDWF scientists and the 2012 oyster HSI model developer (Dr. Tom Soniat), it is 

suggested that several of the SIs be adjusted to reflect recent studies. The time interval indicated in 

the SI “Mean salinity during the spawning season May through September” may no longer be accurate 

because recent research indicates that the oyster spawning season is much longer and recruitment 

remains high through November (Casas et al., 2015; La Peyre & Lowe unpublished data). Therefore, 

the time interval covered by this SI should be expanded to April through November. The time interval 

used by the SI representing oyster-killing floods, “Minimum monthly salinity January through 

December”, also may be inappropriate. Recent studies have indicated that oysters can survive periods 

of low salinities (<3 ppt) when temperatures are low (<25°C; La Peyre et al., 2013; Rybovich et al., 

2016; Lowe et al., 2017). Therefore, the HSI model should use two minimum salinity relationships 

similar to those used by Denapolis (2018; i.e., one relationship for “cold months” and one for “warm 

months”). Lastly, the cultch map used for calculations of the SI “Percent of bottom covered by cultch” 

should be updated with recent survey data. This will allow the model to be used to evaluate impacts to 

current oyster-producing water bottoms. 

In addition to adjustments and updates to existing SIs, new suitability indices should be investigated 

for inclusion in the oyster HSI model. Water temperatures >32°C have been shown to curtail oyster 

feeding, increase disease occurrence, and increase mortality (La Peyre et al., 2015; Rybovich et al., 

2016; Lowe et al., 2017). To account for these effects, a new SI should be explored that considers 

maximum temperatures, mean monthly summer temperatures, or percentage of days with 

temperatures >32°C. In addition, burial of oysters by sediment deposition should be explored as an 

SI, because this has been cited as a main cause of oyster reef failure across a range of settings 

(Powers et al., 2009; Twichell et al., 2010).                
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CRAYFISH 

The 2017 crayfish HSI results showed much less suitable habitat than expected, and some areas 

known to provide good crayfish habitat received low suitability scores. Preliminary investigation 

suggests that the limiting factor driving these results may be the SI “Water depth from July through 

September”, because >96% of the coastwide ICM output in one simulation year examined had July-

September water depths >15 cm, which are unsuitable for summer reproductive activities. Therefore, 

this function should be reformulated, perhaps by adjusting the time intervals covered by the two water 

depth SIs, as suggested in the 2017 Coastal Master Plan Crayfish HSI Model report (Romaire, 2017).   

Romaire (2017) also suggested improvements to the SI describing the suitability of sediment for 

crayfish burrowing activity. The existing model uses “percentage of sand in soil substrate” to define 

this relationship, but the “percent sand” conditions simulated by the ICM were almost always optimal. 

Romaire (2017) suggested replacing “percent sand” in the model with the soil classification system 

used in the United States Department of Agriculture’s Soil Survey Geographic Database. The suitability 

of these soil classes for crayfish burrowing should be evaluated based on sand content and other 

potential unfavorable soil characteristics (Burras et al., 1995; McClain & Romaire, 2004; Chapman, 

2014). If it is determined that the dataset can be used to define crayfish habitat suitability, then it 

should be noted that soil conditions would remain static throughout the analyses because the ICM 

cannot simulate changes to the soil classes over time or as a result of potential restoration and 

protection projects. However, if it is determined that nearly all wetland soil classes are suitable for 

crayfish burrowing, then this SI should be removed from the HSI model. 

AMERICAN ALLIGATOR 

The 2017 alligator HSI results indicated a large area of suitable habitat and estimated high scores in 

wetland areas known for high alligator densities. However, there were a few areas (i.e., the Rockefeller 

Wildlife Refuge) that exhibited lower suitability scores than expected. This was likely due to an 

incomplete understanding of water depth variability for these areas, many of which are impounded 

with their water levels actively managed. In general, the “Relative water depth to the marsh surface” 

SI should be updated by incorporating information from recent literature on the effects of water depth 

on alligator nesting and foraging behavior in Louisiana (Waddle, 2017). An initial literature review 

failed to produce any relevant recent studies, however, this effort should be continued and local 

alligator experts should be consulted for available information. In addition, the model’s “Habitat type” 

SI, which describes the relative suitability of vegetated habitat types, may be improved if it were based 

on actual alligator abundance, rather than aerial surveys of alligator nests and hunting reports 

(Waddle, 2017). Again, the literature and local experts should be consulted to determine if there are 

suitable studies from which a replacement “Habitat type” SI can be developed. If these improvement 

efforts are unfruitful, then the existing alligator HSI model should be used as is.     
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GADWALL AND MOTTLED DUCK 

The 2017 gadwall HSI results were lower than expected, with suitability scores rarely exceeding 0.5. 

These results were initially attributed to low spatial resolution of the ICM’s water depth output (Leberg, 

2017a) or the somewhat restrictive water depth SI used in the model. However, neither of these 

factors affected green-winged teal HSI model, which also had a restrictive water depth relationship but 

produced much higher scores. Preliminary investigation suggests that the limiting factor driving these 

results was the SI “Proportion of cell that is water with SAV”. Only 5.5% of the coastwide ICM output in 

one simulation year examined had any SAV coverage, which seems lower than expected based on 

recent work by DeMarco et al. (2018). Therefore, improvements to the ICM’s ability to predict SAV 

coverage should be explored. If SAV predictions cannot be substantially improved, then the gadwall 

model should be replaced with the better performing green-winged teal HSI model. 

Otherwise, the gadwall and mottled duck HSI models (and the teal model if used) should be updated 

with recent literature and data, if available, on these species usage of different vegetated habitats and 

the influence of water depth on habitat utilization (Leberg, 2017a; Leberg, 2017b). An initial literature 

review did not yield any relevant recent studies, however, this effort should be continued and local 

waterfowl experts should be consulted for available information. Leberg (2017b) also suggested that 

the mottled duck HSI model could be improved by incorporating this species’ nesting habitat. This 

would entail expanding the domain of the ICM to include changes to upland areas or non-wetland, 

elevated habitats immediately adjacent to coastal wetlands. However, after discussions with the ICM 

model developers, it appears that such refinements to the ICM are unlikely, so mottled duck nesting 

habitat should not be included in the HSI model at this time. 

BROWN PELICAN 

The brown pelican HSI model is only applicable to nesting habitat, and therefore the model should be 

improved with recent literature and data on environmental factors influencing nesting habitat 

selection and nesting success (Leberg, 2017c). The ongoing RESTORE Act Center of Excellence 

research project entitled: “Assessment of coastal island restoration practices for the creation of brown 

pelican nesting habitat”, should provide useful information of how site characteristics, such as 

vegetation type and elevation, affect pelican use of an island for nesting habitat. The project will also 

provide information of how proximity to prey resources (primarily menhaden) affects nesting success.  

The information provided by the RESTORE Act project should result in a more refined brown pelican 

HSI model, which would be better able to assess suitability at smaller scales (i.e., a barrier island 

chain or individual island) to determine how nesting habitat changes with island geomorphology. To 

enable such assessments, the spatial resolution of the HSI model should be increased to match that 

of the barrier island digital elevation model under development for the 2023 Coastal Master Plan so 
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that the HSI model can account for finer-scale changes in island size and elevation. Similar fine-scale 

vegetation input data may also be required, but this would be dependent on whether the ICM’s 

Vegetation subroutine can effectively simulate barrier island vegetation composition and coverage at 

finer spatial resolution than a 500 m grid cell. If such ICM refinements and model linkages are not 

practical at this time, then the brown pelican HSI model can still be used to evaluate coastwide 

changes in potential nesting habitat.   

2.4 DEVELOPMENT OF NEW HSI MODELS   

SEASIDE SPARROW 

The seaside sparrow has been identified as a potential new species for inclusion in the 2023 Coastal 

Master Plan modeling efforts. Seaside sparrows are year-round residents of coastal marshes, and thus 

represent different habitat requirements relative to the bird species included in the 2017 Coastal 

Master Plan analyses, which primarily use aquatic habitats. Currently, an HSI model has not been 

developed for the seaside sparrow. A literature review should inform development of a model for the 

2023 Coastal Master Plan, with a focus on populations along the northern Gulf Coast (Louisiana and 

Mississippi) due to differences in migratory behavior and habitat preferences with sparrows along the 

Atlantic Coast and south Texas. Scientists from Audubon Louisiana, Louisiana State University, and 

LDWF should also be consulted on model development.  

A preliminary literature review indicates that the HSI model may include the following environmental 

variables: vegetation type, land area, vegetation cover, elevation, and tidal range. Preferred habitats of 

seaside sparrows in Louisiana include intermediate, brackish, and saline marshes dominated by 

Spartina spp. (Stouffer et al., 2013). Within these habitats, it has been observed that sparrows have 

home ranges averaging in size between 7,500 and 12,500 m2 (Olin et al., 2017), thus small or 

extremely fragmented patches of marsh may not be suitable sparrow habitat (Stouffer et al., 2013). 

Nesting sparrows prefer marshes with vegetation cover between 65.8 and 87.5% (Gabrey & Afton, 

2000) and at least 200 m away from habitats with tree cover (Cooper et al., 2016; Lehmicke, 2014) 

to reduce the threat of nest predation. In addition, nesting sparrows may select areas that reduce the 

risk of nest flooding. Higher marsh elevations, such as areas >0.09 m that do not flood daily (Cooper 

et al., 2016; Lehmicke, 2014), and areas with lower tidal range (<1 m; Stouffer et al., 2013) are 

considered more suitable habitat.   
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BALD EAGLE 

The bald eagle also has been identified as a potential new species for inclusion in the 2023 Coastal 

Master Plan modeling efforts. This species was selected for inclusion because it nests primarily in 

wooded freshwater habitats, as opposed to the brown pelican which nests on isolated coastal islands. 

An HSI model has been developed for the bald eagle, but it may be outdated and focuses on nesting 

eagles north of the 37th parallel (i.e., San Jose, CA to Norfolk, VA; Peterson, 1986). Furthermore, 

eagles in Louisiana exhibit seasonal and migratory behaviors dissimilar to the northern populations. 

Therefore, the existing model may not adequately represent birds in Louisiana coastal habitats. 

Audubon Louisiana has been working on a bald eagle nesting habitat model that uses master plan 

output, which could be further developed for the 2023 Coastal Master Plan. Currently the model only 

uses vegetated habitat type (bottomland hardwood forest, swamp, fresh marsh, etc.) as a variable, but 

additional variables could include: distance from nest to open water, proximity to prey resources, and 

percent land/open water coverage. 
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3.0 SUMMARY OF 
RECOMMENDATIONS AND 

OPTIONS FOR IMPLEMENTATION 

The team has provided several recommendations for improvement of the 2023 Coastal Master Plan 

HSI models for key Louisiana fish, shellfish, and wildlife species. Some recommendations have more 

than one option, apply to either the statistical-based or literature-based SI (or both), and/or apply to 

more than one species. An outline of each species and improvement method (i.e., statistical-based or 

literature-based) is provided in Table 6.  

Our review and recommendations for the HSI models do not address model post-processing or model 

implementation, such as exploring temporal and spatial similarities in projected habitat suitability 

among species, how the HSI model outputs should be interpreted, how model uncertainty may be 

visually depicted or considered when interpreting HSI model output, or how model results for multiple 

species and life stages may be summarized or aggregated in a way to more easily communicate 

outputs for the master plan. These elements will be considered by the team pending the execution of 

the recommended options presented in this report. 

Recommendation 1: Identify Relevant Species to Model 

Fourteen species are recommended for improved HSI modeling and integration into the 2023 Coastal 

Master Plan (Table 1).   

Recommendation 2: Improve Statistical-Based Suitability Indices 

Several potential options were identified for improving the statistical-based suitability indices, many of 

which are interconnected and are dictated by decisions made during the model building process. To 

add clarity in how these improvements may be executed, the options were compiled into a multi-step, 

phased approach for model improvement (see below and Figure 6). Key decision points were 

identified at each step, which provide the opportunity to stop improvements and use the model in its 

current state or continue with additional model improvement activities.  
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Step 1. Improve Existing GLM-based SI function. 

Review of the literature indicates the existing GLM-based SI function is appropriate to use in predictive 

applications. Several improvements were identified to the current GLM approach that could provide 

additional statistical rigor and improve model confidence: 

 Revisit the statistical issues identified in Section 2.2 - Component 2 and formally 

document all findings.  

 Assess the accuracy of model predictions, as described in Section 2.2 - Component 

3, by examining model residuals and comparing observed and predicted values using 

the measures previously discussed (R2, chi-square statistic, RMSE). 

 Generate upper and lower bound confidence intervals for the SI function. 

Standardizing the confidence intervals on a 0 to 1 scale (to match the scale of the SI 

function) would provide an error estimate for each HSI prediction. 

In addition to improving the SI function itself, the team recommends comparing the frequency 

distribution of historical salinity and temperature data (from the LDWF data) to the predicted salinity 

and temperature conditions generated by the 2017 ICM. This would allow for identification of how 

frequently the model is predicting outside the range of the historical conditions and could be used to 

identify potentially sensitive time periods or locations where environmental conditions are in the 

extreme. If the conditions are frequently outside the bounds of the data, this also supports the use of 

an alternate modeling approach that is less sensitive to these issues.  

Following completion of the GLM model assessment (and the comparison of current and future salinity 

and temperature conditions), a decision point is reached. The model can be used in its newly 

improved state or additional improvement activities can be executed. This decision is not strictly 

driven by model accuracy measures or data limitations. Additional factors will influence the 

interpretation of the accuracy measures and ultimately influence the decision, such as the desired 

level of confidence in the model by CPRA, CPRA’s need for statistical robustness or rigor given the 

intended purpose of the HSI models, and time and level of effort required for Step 2. The pros and 

cons of implementing Step 1 only are summarized below. 
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 PROS CONS 

IMPLEMENT 

STEP 1 ONLY 

REQUIRES A MINIMAL LEVEL OF EFFORT AND 

TIME TO IMPLEMENT, RELATIVE TO REMAINING 

STEPS. IMPROVES MODEL DOCUMENTATION. 

ESTABLISHES AN ESTIMATE OF ERROR IN THE 

MODEL, WHICH CAN ASSIST IN APPROPRIATELY 

COMPARING AND INTERPRETING MODEL 

OUTPUTS ACROSS DIFFERENT SIMULATIONS. 

ESTIMATE OF ERROR CAN ALSO HELP GUIDE 

WHETHER ADDITIONAL MODEL IMPROVEMENT IS 

WARRANTED. 

DOES NOT SYSTEMATICALLY 

EXPLORE WHETHER MODEL 

PERFORMANCE CAN BE 

FURTHER IMPROVED. IS NOT AS 

STATISTICALLY OR 

SCIENTIFICALLY RIGOROUS AS 

HABITAT SUITABILITY MODELS 

FOUND IN THE PEER-REVIEWED 

LITERATURE. 

Step 2. Implement a Single New Statistical Modeling Approach 

As previously discussed, there is no clear consensus within the current literature on the selection of 

one modeling approach over another and any of the above-mentioned modeling approaches are 

theoretically suitable for this application. As a result, the team recommends testing each of them 

incrementally, beginning with a single new modeling approach. The modeler should then select which 

approach to implement, based on review of the LDWF data to confirm model assumptions will be met 

and the modeler’s knowledge and familiarity with the modeling approach. Implementation of this 

modeling approach would include: 

 All other improvement activities described in Section 2.2 – Components 2 and 3.  

 Additional environmental and habitat predictor variables could be incorporated at 

this time. Data compilation and preliminary exploratory analysis could be performed 

to determine the likelihood of improved model performance with an expanded 

dataset. 

Once the new model is developed, model predictions and performance can be compared with the GLM 

developed at the end of Step 1. Where differences may exist in the model predictions, comparison of 

model performance statistics can help elucidate why (e.g., model with higher unexplained deviance 

may generate less confidence in the predictions; Elith & Graham, 2009). If the comparison indicates 

model performance has sufficiently improved (see discussion at the end of Step 1), then the new and 

improved model could be selected for use in the 2023 Coastal Master Plan. However, if model 

improvement is minimal or if there is interest in further improving the model, and time and resources 

are available, additional modeling approaches could be incrementally attempted in Step 3. 
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 PROS CONS 

IMPLEMENT 

STEP 1 AND 

STEP 2 

SYSTEMATICALLY EXPLORES WHETHER 

MODEL PERFORMANCE CAN BE 

IMPROVED. ENHANCES THE STATISTICAL 

AND SCIENTIFIC RIGOR OF THE MODEL. 

PROVIDES AN OPPORTUNITY TO IDENTIFY 

CONSISTENT PATTERNS BETWEEN 

APPROACHES, WHICH MAY GENERATE 

ADDITIONAL CONFIDENCE IN THE 

PREDICTIONS. 

REQUIRES MODERATE LEVEL OF EFFORT 

AND TIME TO IMPLEMENT, RELATIVE TO 

STEP 1. DOES NOT NECESSARILY 

GUARANTEE ANY FURTHER 

IMPROVEMENT IN THE MODEL. 

Step 3: Implement All Modeling Approaches 

All remaining modeling approaches would be implemented. After completing the modeling and 

performance assessment outlined in Step 2 for each modeling approach, the modeler could then 

compare performance across all models. If one modeling approach is clearly superior (has high 

accuracy and goodness-of-fit and produces ecologically relevant conclusions), then this model should 

be chosen as the final, improved SI model. If at the end of the modeling exercise, all models perform 

similarly, an ensemble modeling approach could be taken. The ensemble model approach involves 

using a common measure of accuracy or fit to generate a weighted average of all model predictions. 

Thus, the final model output will combine the strengths of each modeling approach to produce the 

best possible prediction. This step will take considerably more time than previous steps, but would 

produce the most statistically rigorous result. 

 PROS CONS 

IMPLEMENT 

STEPS 1, 2, 

AND 3 

SYSTEMATICALLY EXPLORES WHETHER 

MODEL PERFORMANCE CAN BE 

IMPROVED. FURTHER ENHANCES THE 

STATISTICAL AND SCIENTIFIC RIGOR OF 

THE MODEL TO A LEVEL IN LINE WITH THE 

PEER-REVIEWED LITERATURE. 

REQUIRES ADDITIONAL LEVEL OF EFFORT 

AND TIME TO IMPLEMENT. DOES NOT 

GUARANTEE ANY FURTHER 

IMPROVEMENT IN THE MODEL. 
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Recommendation 3: Improve Literature-Based Suitability Indices 

The team recommends refining the structural habitat SI that defines suitability of marsh vegetation to 

open water for brown shrimp, white shrimp, blue crab, gulf menhaden, spotted seatrout and 

largemouth bass (Table 6) to include additional habitats such as shallow and deep non-vegetated 

bottoms (SNVB, DNVB), SAV, and oyster reef.   

The team recommends literature-based HSI improvements for several species including the eastern 

oyster, crayfish, American alligator, gadwall and mottled duck, and the brown pelican. The 

recommended improvements to these species’ HSIs include adding new SI functions, and adjusting 

existing SI functions, based on updated literature reviews and existing data. 

Recommendation 4: Develop New HSI Models 

The team recommends developing new HSI models for the seaside sparrow and bald eagle based on a 

preliminary data review to identify potential environmental variables, and in meeting with Audubon 

Louisiana to review their bald eagle nesting habitat model. 
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Table 6. Summary of recommendations that will be implemented for each of the 

species. Blue checks in the first column of the literature based SI are for species 

that may be able to use some or all of the additional structural habitats defined 

for the refined SI proposed for shrimp, blue crab, and fish. 

 
 

Identify 

Relevant 

Species to 

Model 

(1) 

Improve 

Statistical 

Based SI 

(2) 

Improve 

Literature Based 

SI 

(3) 

Develop New 

HSI Model 

(4) 

Eastern Oyster 
 ✔ ✔  

Brown Shrimp ✔ ✔   

White Shrimp ✔ ✔   

Blue Crab ✔ ✔   

Crayfish   ✔  

Gulf Menhaden ✔ ✔   

Spotted Seatrout ✔ ✔   

Largemouth Bass ✔ ✔   

American Alligator  ✔ ✔  

Gadwall  ✔ ✔  

Mottled Duck  ✔ ✔  

Seaside Sparrow  ✔  ✔ 

Brown Pelican   ✔  

Bald Eagle    ✔ 
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Figure 6. Decision tree for recommended improvements to the statistical-based suitability indices.
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